COMBINED TECHNICAL SERVICES EXAMINATION (INTERVIEW POSTS) - II COMPUTER BASED TEST

DATE OF EXAM: 19.11.2024 AN

PAPER - II - ELECTRICAL ENGINEERING / ELECTRICAL AND ELECTRONICS ENGINEERING (DEGREE STANDARD) (CODE: 400)

1.	The	capacity of a cell (Battery) is measured in
	(A)	Amperes
	(B)	Ampere - hours
	(C)	Watts
	(D)	Watt - hours
	(E)	Answer not known
2.	Sele	ct the incorrect statement about the Fuel cells.
	(A)	Fuel Cells have few moving parts and hence less maintenance
	(B)	The emission levels of fuel cells are low
	(C)	Fuel cells are modular
	(D)	The noise levels of fuel cells are high
	(E)	Answer not known
3.	For	proper operation of a fuel cell, the operating point is set in of the VI characteristics.
	(A)	high load region
	(B)	low load region
	(C)	middle, near flat region
	(D)	any region, irrespective of load
•	(E)	Answer not known
4.	Ven	t plug in a battery is used for
	(A)	Cooling the battery
	(B)	Preventing corrosion
	(C)	To passout gases produced during chemical reaction
	(D)	To breath oxygen from the atmosphere

(E)

Answer not known

5. DC to DC convertor as shown in fig. a battery of 25V is connected and the input current is 4A. At the output side, a voltmeter shows 50V across the load end the output current is 1.8A. Find the power lost in the converter due to losses.

(E) Answer not known

(A)

. (C)

- 6. Variable speed wind Turbines are designed to Achieve
 - (A) Minimum Aero Dynamic Efficiency
 - (B) Maximum Torque
 - (X) Maximum Aerodynamic Efficiency
 - (D) Minimum Torque
 - (E) Answer not known
- 7. Wind Turbines with a high number of blades have
 - (A) Low tip speed ratio
 - (B) High starting torque
 - C) Low tip speed ratio but a high starting torque
 - (D) Neither (A) nor (B)
 - (E) Answer not known

	(A)	Odometers	(B) Anemometers
	(C)	Ammeter	(D) Weather Vanes
	(E)	Answer not known	
9.	Pow	er in wind is	
	(A)	Directly proportional to o	ube of wind velocity
	(B)	Inversely proportional to	cube of wind velocity
	(C)	Directly proportional to s	quare of wind velocity
	(D).	Directly proportional to v	vind velocity
	(E)	Answer not known	
	over	rall efficiency of micro hydr	·
	(A)	0.55	(B) 0.51
	(C)	0.70	(D) 0.61
	(E)	Answer not known	
11.		wind speed (14 km/h or ns is called	4 m/s) at which the turbine output
	(A)	Rated Speed	(B) Cut-Out speed
V	(C)	Cut-in Speed	(D) Average Speed
	(E)	Answer not known	

8.

Wind Speed is measure by

12.	The following data are given for a wind turbine: Blade length = 52 m; wind velocity = 12 m/sec; Air density = 1.23 kg/m ³ ; Power coefficient = 0.4. The power generated by the wind turbine is									
,	(A)	3.5 MW		(B)	6.3 MW					
	(C)	8.8 MW		(D)	10 MW					
	(E)	Answer not known								
13.		A solar cell is an electrical device that converts the energy of light directly into electricity by the								
`	(A)	Photovoltaic effect	•	(B)	Chemical effect					
	(C)	Atmospheric effect		(D)	Physical effect					
	(E)	Answer not known								
14.	A ty	pical open circuit voltage o	of a se	olar o	cell is					
	(A)	12 V		(B)	6 V					
	(C)	3 V	J	(D)	0.5 V					
	(E)	Answer not known								
15.	The	output of solar cell is of th	ie ord	ler of	\mathbf{f}					
,	(A)	1 W		(B)	5 W					
	(C)	10 W		(D)	20 W					
	(E)	Answer not known								

16. A solar PV module having total area of 1.646 m², and gives a current of 8.08 A and voltage of 29.72%. The short circuit current of the module is 8.48A and Open Circuit Voltage is 37.34 V. Find the fill factor of the Solar Cell.

(A) 75.83%

(B) 70.63%

(C) 83.45%

(D) 55.63%

(E) Answer not known

- 17. Energy Conservation means
 - (A) Reducing energy consumption by reducing the output
 - (B) Increasing the output by consuming more energy
 - (C) Reducing the energy consumption without compromising the quantity or quality of production
 - (D) Reducing the energy consumption by reducing the production
 - (E) Answer not known
- 18. In Photo Voltaic system arrange the following from smallest to the largest unit.
 - (i) Module
 - (ii) Array
 - (iii) Solar Cell
 - (iv) Array field

Choose the correct answer from the following options given below:

- (A) (ii), (iv), (i), (iii)
- (B) (ii), (iv), (iii), (i)
- (C) (iii), (ii), (iv), (i)
- (D) (iii), (i), (ii), (iv)
 - (E) Answer not known

			·							
19.	Solar Radiation received on the Earth's surface without change in direction is called									
	(A)	Total Radiation	(B) Direct Beam Radiation							
	(C)	Diffuse Radiation	(D) Atmosphere Radiation							
	(E)	Answer not known								
20.	At s	olar noon, the hour angle is								
•	(A)	Zero degrees	(B) -90°							
•	(C)	+90°	(D) +180°							
•	(E)	Answer not known	•							
21.	Dela	ay Flipflop is								
	(A)	JK.	√ (B) D							
	(C)	T	(D) SR							
	(E)	Answer not known								
22.		plify the following expression $C(BD+CDE)+A\overline{C}$	n using Boolean algebra.							
•	(A)	$Aig(\overline{B}DE+\overline{C}ig)$	(B) $A(B\overline{D}E+C)$							
		$A(B\overline{D}\overline{E}+\overline{C})$	(D) $A(\overline{B}DE+C)$							
	(E)	Answer not known								
23.	Y(A	$(A,B,C,D) = \sum m(0, 2, 5, 7, 8, 1)$	0, 13, 15)							
	for t	the above function the sum	of products expression is							
•	(A)	$A \oplus B$	(B) $B \oplus D$							
•	(C)	$B \odot D$	(D) $A \odot B$							
	(E)	Answer not known								

8

400 - E.E.E

24.	How many full adders are required to construct an M bit parallel adder?			
	(A)	m/2	(B) $m-1$	
	(C)	m	(D) m+1	
•	(E)	Answer not known		
25.	prop	- -	ter uses J-K flip flop. If the flop is 50 Nano-seconds, the be used is equal to	
	(A)	20 MHz	(B) 10 MHz	
	(C)	8 MHz	(D) 5 MHz	
	(E)	Answer not known		
26.	Whic	ch of the following is <u>not true</u> al	oout logic gates?	
	(A)	It is a digital circuit that has output	one or more inputs but only one	
	(B)	It follows a logical relations signals	ship between input and output	
_	(C)	There is no logical relations signals	ship between input and output	
	(D)	It is an electronic device that	implements a boolean function	
	(E)	Answer not known		
27.	The gate		n all its inputs are at logic 0 the	
J	(A)	NOR Gate	(B) AND Gate	
	(C)	OR Gate	(D) XOR Gate	
	(E)	Answer not known	· · · · · · · · · · · · · · · · · · ·	
•				

9

- 28. A colpitts oscillator uses
 - (A) Tapped coil

- (B) Inductive feedback
- (C) Tapped capacitance
- (D) No tuned LC circuit
- (E) Answer not known
- 29. Calculate the duty cycle of the output of an astable multivibrator using timer 555. Assume $R_1=25\,k\Omega$, $R_2=50\,k\Omega$, $C=0.1\,\mu F$

(A) 60%

(B) 75%

(C) 50%

- (D) 100%
- (E) Answer not known
- 30. In a two stage op-amp amplifier, if the input voltage of the first stage is 8 V and output of the second stage is 40 V, then the overall gain of the amplifier is
 - (A) 320

(B) 25

(C) 5

- (D) 32
- (E) Answer not known

31. For the given ideal Op-Amp the output voltage is

(A) 15 V

(B) 9 V

(C) 4.5 V

- (D) 7.5 V
- (E) Answer not known
- 32. The class B push-pull amplifier with $R_L=16\,\Omega$ and $V_{CC}=12\,V$. If the input AC signal produces a peak voltage output of $V_m=6\,V$ across the load resistor R_L , the input power will be
 - \checkmark (A) 2.865 watts

(B) 6 watts

(C) 7.125 watts

- (D) 28 watts
- (E) Answer not known
- 33. In operational amplifier the Common Mode Rejection Ratio (CMRR) is the ratio of
 - (A) Differential gain A_D and common mode gain A_{CM}
 - (B) Differential gain A_D and common mode voltage V_{CM}
 - (C) Common mode gain A_{CM} and differential voltage V_D
 - (D) Common mode gain A_{CM} and common mode voltage V_{CM}
 - (E) Answer not known

54.	44 111	which one of the following is not an application of precision diode:								
	(A)	Rectifier	(B) Clipper							
J	(C)	Schmitt Trigger	(D) Clamper							
	(E)	Answer not known								
35.	In C	In Op-amp μ A 741, the μ A represents the identifying initials used								
	by t	he manufacturer								
	(A)	Motorola	(B) Fair child							
	(C)	National semiconductor	(D) Texas instruments							
	(E)	Answer not known								
36.		ransistor has collector curr te of base current is	ent of 840 μA and $\beta = 105$. The							
•	(A)	8 μ Α	(B) $0.8 \mu A$							
	(C)	8 m A	(D) 0.8 m A							
	(E)	Answer not known								
37.	In a bridge rectifier circuit, the peak voltage is 5 V and diode voltage is 0.7 V. The peak inverse voltage on the diode is									
•	(A)	4.3 V	(B) 3.6 V							
	(C)	9.3 V	(D) 8.6 V							
	(E)	Answer not known								

38.	Choose the right matches:									
	(1)	Lower input current noise	_	Bipolar						
	(2)	Lower input voltage noise	_	CMOS						
	(3)	Higher voltage gain	_	CMOS						
	(4)	High CMRR		Bipolar						
	(A)	(2) and (3) are correct	(B)	(3) and (4) are correct						
	(C)	(1) and (2) are correct	(D)	(1) and (3) are correct						
	(E)	Answer not known								
39.	The	number of depletion layers in	a NP	N transistor is						
	(A)	Three	(B)	Two						
	(C)	One	(D)	Four						
	(E)	Answer not known	•	•						
40.	In a N-P-N transistor, the leakage current is due to									
	(A)	(A) Flow of minority carriers from collector to emitter								
•	(B)	Flow of holes from base to emitter								
	(C)	C) Flow of electrons from collector to base								
•	(D)	D) Flow of holes from collector to base								
	(E)	Answer not known	-	•						
41.	Find the step angle of a variable reluctance stepper motor v 12 teeth in the stator and 8 rotor teeth									
•	(A)	15°/step	(B)	4°/step						
-	(C)	24°/step	(D)	20°/step						
	(F)	E) Answer not known								

42.	The maximum output torque of a permanent magnet synchronous motors is										
	(A)	A) 150 percent of the rated torque									
	(B)	100 percent of the rated torque	Э								
	(C)	50 percent of the rated torque									
	(D)	25 percent of the rated torque									
	(E)	Answer not known									
43.		short pitch angle (electrical) se voltage of an alternator is	to	eliminate 5 th harmonics in	L						
	(A)	5°	(B)	18°							
	(C)	36°	(D)) 72°							
	(E)	Answer not known									
44.		If the input to the prime mover of an alternator is kept constant and the excitation is increased, the power factor is									
	(A)	Leading	(B)	Lagging							
	(C)	Not changing	(D)) Unity							
	(E)	Answer not known									
45.	Duri	ing hunting of synchronous mot	or	•							
	(A)	Negative phase sequence curre	ents	s are generated							
	(B)	Harmonics are developed in th		_							
	(C)	Damper bar develops torque									
	(D)	Field excitation increases									
	(E)	Answer not known		v t							
		•		•							

46.	A 4 pole, 3 phase 50 Hz, star connected alternator has 60 slots, with 4 conductors per slot. Coils are short pitched by 3 slots. If the phase spread is 60°, find the line voltage induced for a flux per pole of 0.943 WB distributed sinusoidally in space. All the turns per phase are in series,							
,	(A)	13185 V	(B)	15000 V				
	(C)	440 V	(D)	1250 V				
·	(E)	Answer not known						
47.	A 4 pole, 50 Hz single phase induction motor has a slip of 5%, the speed of the motor will be							
	(A)	1500 r.p.m.	(B)	1425 r.p.m.				
	(C)	1200 r.p.m.	(D)	1000 r.p.m.				
	(E)	Answer not known						
48.	A 400 V, 10 KW, 4 Pole, 50 HZ Y connected induction motor has full load slip of 5%. The output torque of the machine at full load is							
	(A)	10 Nm	(B)	77 Nm				
	(C)	123 Nm	(D)	67.05 Nm				
	(E)	Answer not known						
49.	A 500 KVA transformer has constant losses of 500 W and copper losses at full load are 2000 W. Then at what load, is the efficiency maximum?							
Ų.	(A)	250 KVA	(B)	500 KVA				
_	(C)	1000 KVA	(D)	125 KVA				
	(E)	Answer not known	. ,					
•		•	•					

50.	The main purpose of performing open-circuit test on a transformer is to measure its								
	(A)	Cu Loss	$\langle B \rangle$	Core loss					
	(C)	Total loss	` '	Insulation resistance					
	(E)	Answer not known	()						
51.	Whe	n the rotor of a 3 phase induct	tion n	notor is blocked, the slip is?					
	(A)	Zero	(B)	0.5					
	(C)	0.1	(D)	1					
	(E)	· /							
52.	The saving in Cu achieved by converting a 2-winding transformer into an auto transformer is determined by								
	(A)	Size of transformer core							
	(B)	Load on the secondary							
V	(C)	Voltage transformation ratio							
	(D)	Magnetic quality of core material							
	(E)	Answer not known							
53.	A 100 KVA, 1100/400 V, 50 Hz 1ϕ transformer has 100 turns on the								
	secor	ndary winding. The number of	f turn	s in its primary will be					
	(A)	550	(B)	275					
	(C)	2750	(D)	5500					
	(E)	Answer not known	` ./						

54. The relation between synchronous speed, stator supply frequency and stator number of poles of a 3ϕ IM is given by

(A)
$$Ns = \frac{P}{120 f}$$

(B)
$$f = \frac{120 \, Ns}{P}$$

$$f = \frac{PNs}{120}$$

(D)
$$Ns = \frac{120 P}{f}$$

- (E) Answer not known
- 55. The DC motor which can provide zero speed regulation at full load without any controller is
 - (A) Cumulative compound
- (B) Differential compound

(C) Series

- (D) Shunt
- (E) Answer not known
- 56. The direction of rotation of a DC compound motor can be reversed by interchanging ————— connections.
 - (A) Armature
 - (B) Series field
 - (C) Shunt field
 - (D) Armature and Series field both
 - (E) Answer not known
- - (A) Dampers
 - (B) High resistance copper conductors
 - (C) Interpoles
 - (D) Equaliser rings
 - (E) Answer not known

- 58. The current drawn by a 120 V dc motor of armature resistance 0.5 Ω and back emf 110 V is
 - (A) 10 A

(B) 20 A

(C) 5 A

- (D) 2 A
- (E) Answer not known
- 59. The critical resistance of the dc generator is the resistance of
 - (A) Armature winding

(B) Field winding

(C) Load

- (D) Brushes
- (E) Answer not known
- 60. The number of parallel paths in the armature winding of a four pole wave connected DC machine having 22 coil side is
 - (A) 04

(B) 02

(C) 22

- (D) 01
- (E) Answer not known
- 61. Fig below shows a compensating network

The above network is called

- (A) Phase lag network
- (B) Phase lead lag network
- (C) Phase lead network
- (D) Phase correcting network
- (E) Answer not known

- 62. A phase lead compensation network
 - (A) Decreases the system bandwidth
 - (B) Speeds up the dynamic response
 - (C) Is applied when error constants are specified
 - (D) Reduces the steady state error
 - (E) Answer not known
- 63. Consider the fourth order system with the characteristic equation

$$S^4 + 8S^3 + 18S^2 + 16S + 5 = 0$$

Determine the state of the system

(A) Stable

(B) Unstable

(C) Quasi – stable

- (D) Indeterminate
- (E) Answer not known
- 64. The main difficulty in using the array method of Routh-Hurwitz stability criterion is that
 - (A) It is difficult to compute various entries of the table
 - When one of the pivoting elements becomes zero, it has to be assumed to be a small number
 - (C) It is not very accurate
 - (D) It is not predicting the system stability
 - (E) Answer not known

65. In Nyquist plot, encirclement of origin in a counter clock wise direction is given by

P = Number of Poles, N = Number of Zeros

(A) P + Z

(B) P + 2Z

(C) 2P + Z

- (D) P Z
- (E) Answer not known
- 66. If the poles of the system lie on the right half of S plane, the system will be
 - (A) Stable

- (B) Conditionally stable
- (C) Marginally stable
- (D) Unstable
- (E) Answer not known
- 67. Characteristics equation for a second order system is $a_2S^2 + a_1S + a_0 = 0$. The Routh array can be represented as
 - (A) $\begin{array}{c|cccc} S^2 & a_2 & a_0 \\ S & a_1 & 0 \\ S^0 & a_0 & 0 \end{array}$

(B) $\begin{array}{c|cccc} S^2 & a_2 & a_0 \\ S & a_1 & 0 \\ S^0 & 0 & 0 \end{array}$

- (D) $\begin{vmatrix} S^2 & a_0 & a_2 \\ S & 0 & a_1 \\ S^0 & 0 & a_0 \end{vmatrix}$
- (E) Answer not known

- 68. A unity feedback system has $G(S) = \frac{80}{S(S+40)}$. The steady state error to unit ramp input will be
 - (A) 2.5

(B) 0.5

(C) 1.5

- (D) 4
- (E) Answer not known
- 69. Corner frequency of the factor $\frac{1}{1+j2w}$ is
 - (A) 0.4

(B) 0.2 ·

(C) 0.5

- (D) 1
- (E) Answer not known
- 70. The open loop transfer function of a feedback system is

$$G(S)H(S) = \frac{K}{S(S+4)(S^2+4S+20)}$$

Find the centroid of the given system.

(A) -2

(B) -3

(C) -4

- (D) -1
- (E) Answer not known
- 71. The Laplace transform of a error e(t) if a system is $\frac{S(S+3)}{S(S+10)}$. The steady state error of the system is
 - (A) 3.6

(B) 1.8

(C) 2

- (D) 2.4
- (E) Answer not known

The transfer function $\frac{V_0(S)}{V_i(S)}$ of the operation amplifier circuit is 72.

- (E) Answer not known
- The transfer function of a system is given as $\frac{25}{S^2 + 2S + 25}$ 73. system is
 - (A) A critically damped system (B) An unstable system
- - An over damped system (C)
- (1) An under damped system
- Answer not known (E)
- The inverted pendulum is called open loop unstable because 74.
 - (A) The pendulum is unstable without applying any input
 - **(B)** The input and output are not compared with each other and it is always unstable
 - (C) The system does not stabilize in spite of the input
 - (D) Torque on the pendulum
 - (E) Answer not known

<i>7</i> 5.	Delay	time	is	the	time	required	for	the	response	to	reach
———— of final value in first attempt.											
							_				

(A) 25%

(B) 50%

(C) 75%

- (D) 90%
- (E) Answer not known
- 76. The transfer function of a linear control system is given by $G(S) = \frac{100(S+15)}{S(S+4)(S+10)}.$ In its bode diagram, the value of gain for w = 0.1 rad/sec is
 - (A) 20 dB

(B) 40 dB

(C) 60 dB

- (D) 80 dB
- (E) Answer not known

77. Choose the right matches of the transfer function and systems

- (1) Gain limited integrator
- $-\frac{1}{RCs}$
- (2) Summing amplifier
- RCs
- (3) Bandwidth limited differenciator -RCs
- (4) Non inverting amplifier
- $-\frac{1}{RCs}$
- (1) and (3) are correct
- (B) (1) and (2) are correct
- (C) (2) and (3) are correct
- (D) (3) and (4) are correct
- (E) Answer not known

- (A) Critically damped
- (B) Over damped

(C) Under damped

- (D) Undamped
- (E) Answer not known
- 79. Choose the incorrect force-current analogy of the following
 - (1) Displacement and inductance
 - (2) Velocity and voltage
 - (3) Mass and capacitance
 - (1) only

(B) (1) and (2) only

.(C) (3) only

- (D) (2) and (3) only
- (E) Answer not known
- 80. Reduce the block diagram of given fig, to the basic feedback loop and determine its G(S) and H(S). Find the transfer function C(S)/R(S)

(A) $1/(S^2+12S+44)$

(B) $1/(S^2 + 12S + 22)$

- (C) $1/(S^2 + 14S + 22)$
- (b) $1/(S^2+14S+44)$
- (E) Answer not known

- 81. The threshold of an instrument is normally defined
 - (A) As the smallest measurable input change (non-zero value) which can be detected
 - (B) As the smallest measurable input which can be detected
 - (C) In terms of linearity of scale
 - (D) As a function of drift
 - (E) Answer not known
- 82. Identify correct relationship for the following equation

where I = Current, J = Current density vector $\hat{n} = \text{normal}$ component of J A = Area.

(A)
$$\int_{l} J^{2} \cdot dI$$

$$\text{(B)} \iint\limits_A J \cdot \hat{n} \ dA$$

(C)
$$\iint_A J^2 \cdot dA$$

(D)
$$\iint_A \frac{J}{\hat{n}} dA$$

(E) Answer not known

$$dH = \frac{I \cdot dL \cdot \sin \theta}{4\pi r^2}$$

I = Current

H = Magnetic field

 θ = Angle

dL =Short Length wire

Area = $4\pi r^2$

(A) Ampere's

B) Biot - Savart

(C) Faraday's

- (D) Gauss
- (E) Answer not known
- 84. The equivalent inductance of two coils A and B connected as in the given figure is given by

- (A) $X_{L1} + X_{L2} 2X_M$
- (B) $X_{L1} + X_{L2} + X_M$

- (C) $X_{L1} + X_{L2} X_M$
- (D) $X_{L1} + X_{L2} + 2X_M$
- (E) Answer not known

85.	. Identify the statement that is not true of ferro magnetic materials								
J	(B)	They have a fixed value of u_r							
	(C)	Energy loss is proportional to the area of the hysteresis loop							
	(D)	They lose their non temperature	linearity property above the curie						
	(E)	Answer not known							
86.	The conductance of electric circuit is analogous in magnetic circuit by								
	(A)	Flux	(B) Reluctance						
_	(C)	Permeance	(D) Relative permeability						
	(E)	Answer not known							
87.	ener (A)	gy stored in the inductor. $0.2~ m J$	(B) 0.25 J						
	` '	0.3 J	(D) 0.35 J						
	(E)	Answer not known							
88.	To fi	$\mathrm{nd}, \ \nabla \cdot (\nabla \times A) = ?$							
	(A)	1	(B) ∇A						
J	(C) .	0	(D) $\nabla^2 A$						
	(E)	Answer not known							

- Calculate the capacitance of a parallel plate capacitor, having a 89. mica dielectric $\Sigma_r = 6$, a plate area $6.45 \times 10^{-3} \,\mathrm{m}^2$ and a separation of 2.54×10^{-4} m
 - 1.349 nF

(B) $1.5 \, pF$

(C) $1.349 \, \mathrm{pF}$

- (D) 1.5 F
- (E) Answer not known
- Point charges $Q_1 = 1 nC$ and $Q_2 = 2 nC$ are at a distance apart. Which of the following statement are incorrect?
 - The force on Q_1 is repulsive
 - The force on Q_2 is the same in magnitude as that on Q_1 (B)
 - As the distance between them decreases, the force on Q_1 increases linearly
 - The force on Q_2 is along the line joining them (D)
 - (E) Answer not known
- 91. Verify whether the vector field $\vec{E} = YZ\vec{a}_x + XZ\vec{a}_y + XY\vec{a}_z$ is both solenoidal and irrotational?

Solenoidal and irrotational. Assertion [A]:

Reason [R] : $\nabla \cdot \vec{E} = 0$ and $\nabla \times \vec{E} = 0$.

- [A] is true but [R] is false (A)
- Both [A] and [R] are true; and [R] is the correct explanation
 - [A] is false, [R] is true (C)
 - (D) Both [A] and [R] are true, but [R] is not the correct explanation
 - (E) Answer not known

	(A)	Maximux	(B)	Minimum					
,	(C)	Zero	(D)	Uniform					
	(E)	Answer not known		•					
93.		Find the electric field when the velocity of the field is 10 m/s and the flux density is 6 units							
	(A)	50 units	(B)	60 units					
	(C)	40 units	(D)	70 units					
	(E)	Answer not known		•					
94.	Which of the following statements is correct for divergence of electric and magnetic flux densities?								
	(À)	It is zero for electric flux density							
•	(B)	It is zero for magnetic flux density							
	(C)	Both are zero							
	(D)	These are zero for static densities							
	(E)	Answer not known							
95.	Find the law, which may be obtained using gauss law as reference?								
	(A)	Faraday's law	(B)	Ampere's law					
,	(C)	Coulomb's law	(D)	Ohm's law					
	(E)	Answer not known		·					

The electric flux and field intensity inside a conducting sphere is

92.

96.	Which of the following relationship exists between electric flux density and electric field intensity?						
•	(A)	Linear	(B) Inversely linear				
	(C)	Non-linear	(D) Inversely non-linear				
	(E)	Answer not known					
97.	Which of the following is a mathematically incorrect expression?						
	(A)	Grad DN	(B) Div Curl				
,	(C)	Grad Curl	(D) Crul Grad				
	(E)	Answer not known	•				
98.	Electric flux density in a charge free region is given by						
	$\overline{D} = 10x \ \overline{a}x + 5y \ \overline{a}y + KZ^2 \ \overline{a}_2 \ \mu\text{C/m}^2 \qquad . $						
	find	the constant K .					
	(A)	-20	(B) -25				
,	(C)	-15	(D) 10				
	(E)	Answer not known					
99.	In xy -plane, $Q_1 = 100 \mu\text{C}$ at $(2, 3, 0)$ m experiences a repulsive force of 7.5 N because of Q_2 at $(10, 6, 0)$ m.						
	Fine	d Q_2					
	(A)	608 μC	(B) 668 μC				
	(C)	688 μC	(D) 638 μC				
	(E)	Answer not known	•				

100. The divergence of the given field

$$\overline{F} = 30 \ \overline{a}x + 2xy \ \overline{a}y + 5xz^2 \ \overline{a}z$$
 at $(1, 1, -0.2)$ is

(A)

(B) 1

(C) 2

- (D) 3
- (E) Answer not known
- 101. In pulse code modulation (PCM) system, if the code word length is increased by 2 bits, signal to quantization noise ratio improves by a factor
 - (A) ·2

(B) 8

(C) 16

- (D) $\frac{8}{6}$
- (E) Answer not known
- 102. Any signal x(t) can be represented as
 - $(A) \quad x_e(t) + x_o(t)$

(B) $x_e(t) - x_o(t)$

(C) $\frac{x_e(t)}{x_o(t)}$

- (D) $x_e(t) \times x_0(t)$
- (E) Answer not known
- 103. A delta modulation system require to maintain a minimum (SNR) of 60 dB. The minimum sampling rate for $m(t) = 10\cos(200\pi t)$ to avoid slope over load distortion is
 - (A) 10⁴ samples/s

(B) 10^6 samples/s

 \mathcal{C}) 10^8 samples/s

- (D) 10^{10} samples/s
- (E) Answer not known

104. The numbers of layers in ISO/OSI model and TCP/IP model are

(A) 5 and 7

(B) 7 and 5

(C) 7 and 7

- (D) 5 and 5
- (E) Answer not known

105. Carson's rule in the frequency modulation

(B) $2\Delta f(\beta+1)$

·(C) $2\Delta f\left(\frac{1}{\beta}\right)$ ·

- $\cdot \quad \text{(D)} \quad \Delta f \left(1 + \frac{1}{\beta} \right) \cdot$
- (E) Answer not known

106. A special PCM system uses 16 channels of data, one whose purpose is identification and synchronization. The sampling rate is 3.5 kHz. The word length is 6 bits. Find

- (i) The no. of bits per frame
- (ii) The serial data rate
 - (A) 69, 300 kHz

(B) 96, 336 kHz

(C) 75, 400 kHz

- (D) 100, 500 kHz
- (E) Answer not known

- 107. Let the signal x(t) have the fourier transform x(w). Consider the signal $y(t) = \frac{d}{dt} [x(t-t_d)]$ where t_d is an arbitrary delay. The magnitude of the fourier transform of y(t) is given by the expression.
 - $|x(w)| \cdot |w|$ (A)

(B) $|x(w)| \cdot w$

(C) $w^2 \cdot |x(w)|$

- $(D) |w| \cdot |x(w)| \cdot e^{-jwt_d}$
- (E) Answer not known
- When bilinear transformation is applied to $H(s) = \frac{4}{(s+2)(s+5)}$ resulting digital filter has
 - Poles at -0.5 and -0.2(A)
- (B) Poles at -2 and -5
- Poles at -2/4 and -5/4(C)
- · (D) Zeros at 0 and 1
- **(E)** Answer not known
- The periodicity of the signal $x(n) = \cos\left(\frac{2\pi n}{5}\right) + \cos\frac{2n}{7}$ is
 - 35 (A)

(C)

- (B) 7
 (D) Infinite
- **(E)** Answer not known

110.	The first five points of the eight point DFT of a real valued sequence are $\{0.25, 0.125 - j \ 0.3018, 0, 0.125 - j \ 0.0518, 0\}$ Determine the								
	remaining 3 points.								
	(A)	$\{0.125+j\ 0.0518,\ 0,\ 0.125+j\ 0.3018\}$							
	(B)	$\{0.125 - j0.0518, 0, 0.125 + j0.3018\}$							
	(C)	$\{0.125 + j\ 0.0518,\ 0,0.125 - j\ 0.318\}$							
	(D)	$\{1,0,j\}$							
	(E)								
	(—)	,							
111.	Match List I with List II with reference to a 8085 microprocessor and select the correct answer using the codes given in the lists:								
		List I	(Instr	uction	ı)	List II (Type of Addressing)			
	(a)	MOVA, M			1.	Direct addressing			
•	(b)	LXIH	, E400	Ή	2.	Register Addressing			
	(c)	LDA FICDH			3.	Implicit Addressing			
	(d)	CMC			4.	Register Indirect Addressing			
					5.	Immediate Addressing			
•		(a)	(b)	(c)	(d)				
	(A)	5	4	1	3				
	(B)	4	5	3	1				
	(C)	5 ·	4	2	$\cdot 3$				
	(D)	4	5	1	3				
	(E)	Answ	ver no	t knov	vn				
112.	Number of address lines necessary to connect 8k memory chip is								
	(A)	10				(B) 11			
	(C)	12		•		(D) 13			
	(E)	Ansv	ver no	t knov	wn				

113.	In 8279, keyboard or Display interface the pins used to scan both the keyboard and displays are $$									
	(A)	OUT B3 – OUT B0	(B)	RL 7 – RL 0						
	(C)	DB 7 – DB 0	• •	SL 3 – SL 0						
	(E)	Answer not known	, ,		1					
114.	The i	The internal data bus width of 8279 is								
	(A)	8 bits	(B)	12 bits						
	(C)	16 bits	(D)	32 bits						
	(E)	Answer not known								
115.	In R	In RS 232 signal levels are not compatible with								
	(A)	DTL	(B)	TTL						
•	(C)	RTL		CMOS	•					
	(E)	Answer not known								
116.	Mem	Memory read cycle in 8085 requires — T states								
	(A)	4	(B)	3						
	(C)	2	(D)	1						
	(E)	Anarron not Irnourn								

117.	A memory mapped I/O device has an address of OOFOH. Which of the following 8085 instruction outputs the content of the accumulator to the I/O Device?							
	(A)	LXI H,OOFOH MOV M,A	(B)	LXI H,OOF	ОН			
	(C)	LXIH, OOFOH OUT FOH	(D)	LXIH, OOFO MOVA, M				
	(E)	Answer not known						
118.	Which of the following instructions are 2-Byte instructions?							
	(A)	ΒZ	(B)	BNC				
	(C)	GOTO	(D)	BRA				
	(E)	Answer not known		•				
110	Cunn	ooo nogistans 'A' an	J (10)	EOII J 40	YT	. 1		

119. Suppose registers 'A' and 'B' contain 50H and 40H respectively. After execution of MOVA, B instruction, find the contents of Registers A and B

(A) 40 H, 40H

(B) 50 H, 40 H

(C) 50 H, 50 H

- (D) 60 H, 40 H
- (E) Answer not known

120. How are the status of the carry, auxiliary carry and parity flags affected after execution of these instructions?

MOV A, #9C

ADD A, #64 H

- (A) CY = 0, AC = 0, P = 0
- (B) CY = 1, AC = 1, P = 0
 - (C) CY = 0, AC = 1, P = 0
 - (D) CY = 1, AC = 1, P = 1
 - (E) Answer not known
- 121. A DC shunt motor takes a current of 80A on a 480V supply and runs at 960 RPM the armature resistance is 0.25 Ω and the field resistance is 120 Ω . A chopper is used to control the speed of the motor at 400 RPM having constant torque. The on -period of the chopper is 3 ms. The field is supplied directly from 480V supply. Determine the frequency of the chopper
 - (A) 95.12 Hz

(B) 102.48 Hz

(C) 146.44 Hz

- (D) 130.05 Hz
- (E) Answer not known
- 122. The supply voltage of a Dc chopper is 220 V it delivers a load of 88 V. If the chopper is operating with 1 kHz frequency, the non-conduction period of the switch is
 - (A) $200 \mu s$

(B) $400 \mu s$

(C) $600 \mu s$

- (D) $1000 \ \mu \, \text{s}$
- (E) Answer not known

- 123. A 3φ wound rotor induction motor is connected by a chopper controlled resistance in its rotor circuit. A resistance of 2Ω is connected in the rotor circuit and a resistance of 4Ω is additionally connected during off period of the chopper (off period 4 ms). The total resistance across the diode bridge for the chopper frequency of $200~{\rm Hz}$ is
 - $(A) \frac{26}{5}$

(B) $\frac{24}{5}$

(C) $\frac{18}{5}$

- (D) $\frac{16}{5}$
- (E) Answer not known
- 124. Stator voltage control results in good efficiency for one of the loads given below

T = Torque

w =Speed

(A) $T \alpha w^2$

(B) T = Constant

(C) $T \alpha w$

- (D) $T\alpha \frac{1}{w}$
- (E) Answer not known
- 125. The power developed by the motor is the machine works under braking opposing the motion, then it is called as
 - (A) Forward braking
- (B) Forward motoring
- (C) Reverse braking
- (D) Reverse motoring
- (E) Answer not known

126.	the o	ngle-phase half bridge-inverter has a resistive load of $R=3\Omega$ and e d.c. input voltage $E_{dc}=50V$. Calculate the RMS output voltage fundamental frequency E_1 and output power P_0 .						
	(A)	15.76 V, 2	53 W	(B)	22.5 V, 253 W			
J.	, ,	22.5 V, 20		• -	15.76 W, 208.33 W			
•	(E)	Answer no		` '	,			
127.	Asse	rtion [A] :	On line UPS provi	ides z	zero transition time.			
	Reas	on [R] :	Time required to versa is zero.	norn	nal to backup mode and vice			
	(A)	[A] is true	[R] is false					
	(B) Both [A] and [R] are true, and [R] is the correct explanation (C) [A] is false, [R] is true							
•	(D)	Both [A] and [R] are true, and [R] is not the correct explanation						
	(E)	Answer no	ot known					
128.	Ther	e is an inhe	erent short circuit p	rote	etion in			
	(A)	Voltage so	urce inverter	(B)	Current source inverter			
	(C)	AC voltage	e controller	(D)	Cyclo converter			
	(E)	Answer no	ot known					
129.			which produces a loge is known as	ower	average output voltage than			
	(A)	Cuk conve	erter	(B)	Buck-Boost converter			
	(C)	Boost conv	verter	(D)	Buck converter			
	(É)	Answer no	ot known		·			
•					•			

130.		is the chopper circuit's time po ping frequency is	eriod and α is its duty cycle, the					
	(A)	$T_{ m ON}/lpha$	(B) T_{OFF}/α					
J	(C)	$lpha/\mathrm{T_{ON}}$	(D) α/T_{OFF}					
	(E)	Answer not known						
131.		t is the maximum output volied with line voltage of 440 V?	voltage of a 3ϕ bridge rectifier					
	(A)	528 V	(B) 396 V					
	(C)	594 V	(D) 616 V					
	(E)	Answer not known	· ,					
132.	3Ω		feeds power to a resistive load of alculate the maximum values of angle $\alpha = 0$.					
•	(A)	34.512 A	(B) 24.403 A					
	(C)	17.262 A	(D) 38.621 A					
	(E)	Answer not known	•					
133.	A single phase transformer, with secondary voltage of 230 V, 50 Hz, delivers power to load $R = 10\Omega$ through a half wave controlled rectifier circuit, for a firing angle delay of 60°, determine average O/P current.							
	(A)	77.64 A	(B) 7.764 A					
	(C)	776.4 A	(D) 0.7764 A					
	(E)	Answer not known						

40

400 - E.E.E

- 134. The fundamental current component of a full wave diode bridge rectifier is 3A and the displacement factor is 0.9. When the supply current is purely sinusoidal the input power factor of the circuit is
 - (A) zero
 - (B) 0.9 lagging
 - (C) 0.45 lagging
 - (D) 0.707 lagging
 - (E) Answer not known
- 135. In 3-phase AC to DC converter which requires neutral point connection is
 - (A) 3-phase semi converter
 - (B) 3-phase full converter
 - (C) 3-phase half-wave converter
 - (D) 3-phase full converter with diodes
 - (E) Answer not known
- 136. SCRs with peak forward voltage rating of 1000 V and average on state current of 40 A are used in single phase mid point converter. Find the maximum voltage of the converter. Use Factor of Safety (FOS) = 2.5.
 - (A) 500 V

(B) 400 V

(C) 600 V

- (D) 200 V
- (E) Answer not known

137. If the latching current in the circuit shown in fig is 4 mA, obtain the minimum width of the gating pulse required to properly turn-on the SCR.

- (A) $2 \mu S$
- (C) 4 mS

- (D) 2 mS
- (E) Answer not known
- 138. For the power semiconductor devices IGBT, MOSFET, Diode and Thyristor which one of the following statement is true?
 - (A) All the four are majority carrier devices
 - (B) All the four are minority carrier devices
 - (C) IGBT and MOSFET are majority carrier devices whereas diode and thyristor are minority carrier devices
 - MOSFET is majority carrier devices where as IGBT, diode and thyristor are minority carrier devices
 - (E) Answer not known
- 139. RC snubber is used in parallel with the thyristor to
 - \checkmark (A) reduce dV/dt across it
 - (B) reduce $\frac{di}{dt}$ through it
 - (C) limit current through thyristor
 - (D) ensure its conduction after gate signal is removed
 - (E) Answer not known

	(A)	in series	(B)	in inverse series					
	(C)	in parallel	(D)	in inverse parallel					
	(E)	Answer not known							
141.	An ir	nstrument which is used to mea	asur	e the level of illumination is					
	(A)	Power Analyser	(B)	Synergy Meter					
	(C)	Multimeter	(D)	Lux meter					
•	(E)	Answer not known		•					
142.	the r	ong-line is operating under receiving end voltage is greaters is called as		_					
	(A)	Skin-effect	(B)	Ferranti-effect					
	(C)	Hall-effect	(D)	Corona-effect					
	(E)	Answer not known							
143.	Which of the following properties are associated with SF ₆ circuit breaker?								
	1	At atmospheric pressure its of air.	liele	ctric strength is 2 to 3 times					
	2.	Its molecules absorbs free elec	ctror	s in the air path					
	3.	Its arc time is few ms							
	4.	Its heat capacity below 6000°l	K is	much larger than that of air					
	(A)	1, 2 and 3	(B)	1, 2 and 4					
	(C)	1, 3 and 4	(D)	1, 2, 3 and 4					
	(E)	Answer not known							

140. A triac is equivalent to two thyristors.

144.		ree phase circuit breaker is rat reaking capacity is,	ed a	s 1500 A, 1000 MVA, 33 KV.
	(A)	$\sqrt{3} \times 1000 \text{ MVA}$	(B)	1000 MVA
	(C)	$\frac{1000}{\sqrt{3}}$ MVA	(D)	$3 \times 1000 \text{ MVA}$
	(E)	Answer not known		
145.	Arcin	ng on transmission lines is prev	ente	ed by connecting a suitable
	(A)	Circuit breaker	(B)	Protective relay
J	(C)	Inductor in the neutral	(D)	Capacitor in the neutral
	(E)	Answer not known		

146. Buchholz relay provides protection against faults in

147. The Nodal Admittance Matrix (Y_{bus}) of a power system is not

(B) Transformers

(A) Symmetric

(A)

(B) A square matrix

Generators

- (C) A full matrix
 - (D) Generally having dominant diagonal elements
 - (E) Answer not known

	(A)	Single-phase to ground	(B)	Phase-to-Phase
	(C)	Two-phase to ground	(D)	Three-phase to ground
	(E)	Answer not known		
149.		e fault current is 1000 A, rela 5. The plug setting multiplier i	_	tting is 50% and CT ratio is
	(A)	40 A	(B)	4 A
	(C)	5 A	(D)	10 A
•	(E)	Answer not known		•
150.		a 15 bus power system with 3 v bian matrix is	olta	ge controlled bus, the size of
	(A)	11 × 11	(B)	12 × 12
	(C)	24 × 24	(D)	28×28
	(E)	Answer not known		
151.	const	Hz, 4-pole turbo generator rate tant of 8.0 MJ/MVA. Determine thronous speed.		
	(A)	800 MJ	(B)	·1600 MJ
	(C)	400 MJ	(D)	1000 MJ
	(E)	Answer not known		
				•

148. The most common type of fault is

152.	stri: syst	ng fo	r a 22 If the	2 KV,	50 Hz s	singl	capacitance value C make up a e phase overhead line insulator tance is also C. Then the string	
	(A)	50%	, D				(B) 75%	
	(C)	90%	ó			Ì	(D) 86%	
	(E)	Ans	wer n	ot kno	wn			
153.		es giv	en belo		ist-1 and	List	2. Select your answers using the	
		List		-			List 2	
			holz r	•		1.	Feeder	
			slay R	-		2.		
							Overhead transmission line	
	(d)	Dista	ance re	elay		4.	Generator	
		(a)	(b)	(c)	(d)			
	(A)		2		4			
	(B)		1		4			
J	(C)		1	4	3			
	(D)	1	2	4	3			
	(E)	Ans	wer no	ot knov	wn			
	•			•		•	•	
154.	The	relat	ion be	tween	insulatio	n res	sistance and length of the cable is	
	(A)	Dire	ectly p	roport	ional			
v	(B)	Inve	ersely	propor	tional			
	(C)	Ren	nain u	nchang	ged			
	(D)	Exp	onenti	al rise	;			
	(E)				•			
	\ _ <i>/</i>	2) Answer not known						

155.	In	the	case	of a	HVDC	system	there	is
------	----	-----	------	------	-------------	--------	-------	----

- (A) Charging current but no skin effect
- (B) No charging current but skin effect
- (C) Neither charging current nor skin effect
 - (D) Both charging current and skin effect
 - (E) Answer not known

 w_c – weight of conductor/m ·

 w_i – weight of ice/m

 w_m – weight of wind/m

s – slant sag and θ = angle of resultant weight

(A)
$$\sqrt{(w_c + w_i)^2 + w_w^2}$$
; $s \cos \theta$

(B)
$$\sqrt{(w_c + w_w)^2 + w_i^2}$$
; $s \cos \theta$

(C)
$$\sqrt{(w_c + w_i)^2 + w_w^2}$$
; $s \sin \theta$

(D)
$$\sqrt{(w_c + w_w)^2 + w_i^2}$$
, $s \sin \theta$

- (E) . Answer not known
- 157. If a generator of 250 MVA rating has an inertia constant of 6 MJ/MVA, its inertia constant on 100 MVA
 - (A) 15 MJ/MVA

(B) 10.5 MJ/MVA

(C) 6 MJ/MVA

- (D) 2.4 MJ/MVA
- (E) Answer not known

	impe	edance of the circuit element w	ill be)
	(A)	0.30	(B)	0.60
	(C)	0.0030	(D)	0.0060
	(E)	Answer not known		
		· ·		
159.	facto	enerating station has a maximum of 60% and a plant capacity of the plant is		
	(A)	5 MW	(B)	4 MW
Ų	(C)	6 MW	(D)	10 MW
	(E)	Answer not known		
160.	leak	ngle phase transformer is rate age reactance is 0.96 Ω when rmine its leakage reactance in	refer	red to low-voltage side, then
	(A)	0.021 p.u.	(B)	0.015 p.u.
	(C)	0.018 p.u.	(D)	0.025 p.u.
	(E)	Answer not known		
161.		bit digital to analog converter Its resolution is	r has	full scale output voltage of
	(A)	8 mV	(B)	19.5 mV
	(C)	12 mV	• •	10 mV
	(E)	Answer not known		

158. The per unit impedance of a circuit element is 0.30. If the base KV

and base MVA are halved, then the new value of the per unit

162.	The reference voltage of a dual slope ADC is 5 V. The integrator has a capacitor of 1 μF and resistance of 100 k $\Omega.$ The time taken to read an unknown voltage V_x is 0.2 sec. Find V_x							
	(A)	2.1 V	(B) 10 V					
_	(C)	2.5 V	(D) 8 V					
	(E)	Answer not known						
100	mı ·							
163.	_	LEDs display require						
•	(A)	A voltage of 1.2 V and a curr	rent of 20 mA					
	(B)	A voltage of 25 V and a curre	ent of 20 mA					
	(C)	A voltage of 1.2 V and a curr	ent of 100 mA					
	(D)	A voltage of 25 V and a curre	ent of 100 mA					
	(E)	Answer not known						
164.	-	gh permeability nickel iron h ore in LVDT	ydrogen annealed material is used					
	(A)	To produce high noise						
	(B)	To produce high null voltage	,					
	(C)	To have low sensitivity						
J	(D)	To produce low harmonics						
	(E).	Answer not known						
165.	Whic	ch one of the following devices	s can measure pressure directly?					
	(A)	LVDT	(B) Strain gauge					
	(C)	Rotameter	(D) Bourden Tube					
	(E)	Answer not known						
•		•	•					

166.	In a	LVDT,	the two	secondary	voltages
------	------	-------	---------	-----------	----------

- (A) Are independent of the core position
- (B) Vary unequally depending on the core position
 - (C) Vary equally depending on the core position
 - (D) Are always in phase quadrature
 - (E) Answer not known

167. The gap of tape recorder is $7 \, \mu m$. Determine the speed of the tape so as to have satisfactory response at 40000 Hz. Assume the wavelength of the recorded signal is 3 times greater than the gap of recorder.

(A) 2.8 m/sec

(B) 5.75 m/sec

(C) 840 m/sec

- (D) 8.4 m/sec
- (E) Answer not known

168. The inductance of a moving iron instrument is given by $L = \left(10 + 5\theta - \theta^2\right)$ MH where θ is the deflection in radian from zero position. The spring constant is 12×10^{-6} NM/RAD. The deflection for a current of 5 A is

(A) 90°

(B) 94.8°

(C) 96.8°

- (D) 92°
- (E) Answer not known

169. In a wheat stone bridge $R_1 = 50~\Omega$, $R_2 = 65~\Omega$, $R_3 = 100~\Omega$ and R_x is unknown resistance when the Galvanometer indicates zero. If R_3 is having $\pm 5\%$ tolerance on its nominal value, the range of R_x are

(A) 117, 143

(B) 120, 140

- (C) 125.75, 134.75
- (D) 123:5, 136.5
- (E) Answer not known
- 170. The true ohm meter measures
 - (A) Average of the instantaneous values of current
 - (B) Average of square of instantaneous currents
 - (C) Instantaneous current
 - (D) Maximum value of current
 - (E) Answer not known
- 171. Which bridge is used for the precise measurement of unknown capacitance and dielectric loss of capacitor?
 - (A) Schering bridge

- (B) Maxwell's bridge
- (C) Wheatstone bridge
- (D) Maxwell's double bridge
- (E) Answer not known

172. Determine the value of R and L of the inductor connected in the bridge circuit shown in fig.

(A) 1000Ω , 500 mH

(B) 666.6Ω , 180 mH

(C) 240 Ω, 120 mH

- (D) 120Ω , 240 mH
- (E) Answer not known
- 173. The inductance of MI instrument is given by $L = \left(12 + 6\theta \theta^2\right) \mu H$, where θ is the deflection in radians from zero position. The spring constant is 12×10^6 NM/Radians. Calculate the deflection for a current of $8~\mathrm{A}$
 - (A) 14.47°

(B) 144.74°

(C) 15.54°

- (D) 155.4°
- (E) Answer not known
- 174. The following readings are obtained for one month of 30 days. KVAhr meter = 83830, kwh meter = 291940, demand indicator = 1400 kw. Find out the average monthly load factor.
 - (A) 0.289

(B) 0.389

(C) 0.189

- (D) 0.489
- (E) Answer not known

175. Phanto	m loading	for	testing	of	energy	meter	is	used
-------------	-----------	-----	---------	----	--------	-------	----	------

- (A) to isolate the current and potential circuits
- (B) to improve accuracy
- (C) for meters having low current rating
- (D) to test meters having large current rating for which loads may not be available in laboratory and also reduces power losses during testing.
 - (E) Answer not known
- 176. A 250 μ A ammeter has an internal resistance of 150 Ω . For extending its range to measure 1000 μ A. The shunt resistance required is
 - (A) 25Ω

(B) 50 Ω

(C) $.55 \Omega$

- (D) 30 Ω
- (E) Answer not known
- 177. In a single phase induction type energy meter, the lag adjustment is done to ensure that
 - (A) Current coil flux lags the applied voltage by 90°
 - (B) Pressure coil flux lags the applied voltage by 90°
 - (C) Pressure coil flux is in phase with the applied voltage
 - (D) Current coil flux lags the pressure coil flux by 90°
 - (E) Answer not known
- 178. Three resistors $R_1 = 50\Omega \pm 5\%$ $R_2 = 60\Omega \pm 5\%$ and $R_3 = 70\Omega \pm 5\%$ are connected in series. The limiting error in ohm is
 - (A) $\pm 15\Omega$

(B) $\pm 9\Omega$

(C) $\pm 10\Omega$

- (D) $\pm 12\Omega$
- (E) Answer not known

179. PMMC	instruments	have
-----------	-------------	------

(A) Non uniform scale

(B) High sensitivity

(C) Uniform scale

(C) Both (B) and (C)

(E) Answer not known

180. A step input of 5 A is applied to an ammeter. The pointer swings to a voltage of 5.18 A and finally comes to rest at 5.02 A. Determine the percentage error in the instrument.

(A) 0.2 %

(B) 0.3 %

(C) 0.4 %

(D) 0.5 %

(E) Answer not known

181. A star connected network consists of three resistances 10 Ω , 10 Ω and 5 Ω . Convert the star-connected network to equivalent delta-connected network.

- (A) $40 \Omega, 20 \Omega, 20 \Omega$
- (B) 40 Ω, 15 Ω, 15 Ω
- (C) $15 \Omega, 40 \Omega, 15 \Omega$
- (D) $10 \Omega, 15 \Omega, 15 \Omega$
- (E) Answer not known

182. Which one of the following statements is incorrect with respect to Delta connected three phase circuit?

- (A) Line currents are 120° apart from each other
- (B) Line currents are 30 ° behind the respective phase currents
- (C) The angle between the line currents and the corresponding line voltages is $45^{\circ} + \phi$
 - (D) Line current is $\sqrt{3}$ times the phase currents
 - (E) Answer not known

183. A delta connected network with its wye-equivalent is shown in figure. The resistances R₁, R₂ and R₃ (in ohms) are respectively.

- (A) 1, 1 and 0.5
- (B) 0.5, 1 and 1
- (C) 1, 0.5 and 1
 - (D) 0.5, 0.5 and 1
 - (E) Answer not known

184. Find the Z-parameters for the network shown in fig.

- ·(A) $Z_{11} = 15~K\Omega$, $Z_{12} = 17~K\Omega$, $Z_{21} = 17~K\Omega$, $Z_{22} = 12~K\Omega$
- (B) $Z_{11} = 17 \text{ K}\Omega$, $Z_{12} = 12 \text{ K}\Omega$, $Z_{21} = 12 \text{ K}\Omega$, $Z_{22} = 15 \text{ K}\Omega$
 - (C) $Z_{11}=17~K\Omega$, $Z_{12}=15~K\Omega$, $Z_{21}=12~K\Omega$, $Z_{22}=15~K\Omega$
 - (D) $Z_{11}=15~K\Omega$, $Z_{12}=17~K\Omega$, $Z_{21}=17~K\Omega$, $Z_{22}=15~K\Omega$
 - (E) Answer not known

185. The h parameters h₁₁ and h₁₂ are obtained by

- (A) Shorting output terminals
 - (B) Shorting input terminal
 - (C) Opening input terminal
 - (D) Opening output terminal
 - (E) Answer not known

186. If a two-port network is passive, then we have, with the usual notation, the following relationship

(A) $h_{12} = h_{21}$

(B) $h_{12} = -h_{21}$

(C) $h_{11} = h_{22}$

- (D) $h_{11}.h_{22}-h_{12}.h_{21}=1$
- (E) Answer not known

187. The voltage across R after t=0 and t=1 sec, will be

(A) 100 V, 632 V

(B) 0 V, 63.2 V

(C) 100 V, 36.8 V

- (D) 0 V, 36.8 V
- (E) Answer not known

188. The time constant of a series RL circuit is

(A) LR

(B) R/L

(C) e-R/L

- (D) L/R
- (E) Answer not known

189. A series Rc circuit consists of R=10 Ω C=0.1 F. A constant voltage of 20 V is applied to the circuit at t=0. Determine the voltage across the resistor?

(A) $20 (1-e^{-10t})$ volts

(B) $20 e^{-10t}$ volts

(C) 20 e^{-t} volts

- (D) 20 (1-e^{-t}) volts
- (E) Answer not known
- 190. Which one of the following statements is incorrect with respect to resonance. At resonance, in RLC series circuit?
 - (A) Current is maximum
 - (B) Impedance is maximum
 - (C) Current is in phase with the applied voltage
 - (D) Capacitive reactance is equal to inductive reactance
 - (E) Answer not known
- 191. The neutral points of source and load are shorted to form the reference node in a single phase equivalent circuit even if the neutral points are connected through impedance in the actual circuit. This is so because the neutral connection in a balanced circuit will
 - (A) Not carry any current
 - (B) Carry maximum current
 - (C) Carry minimum current
 - (D) Not carry zero current
 - (E) Answer not known

192. For the circuit shown, find the Q-factor

(A) 10

(B) 447

(C) 4.47

- (D) 71
- (E) Answer not known

193. In a series RLC circuit operating below the resonant frequency, the current

(A) I leads Vs

- (B) I lags Vs
- (C) I is in phase with Vs
- (D) Zero
- (E) Answer not known

194. A circuit with a resistor, inductor and capacitor in series is resonant of f_o Hz. If all the components values are now doubled, the new resonant frequency is

(A) $2f_0$

(B) Still f_0

(C) $f_0/4$

- (D) $f_0/2$
- (E) Answer not known

- 195. When two resistances of equal values (R) connected in parallel, the effective resistance is
 - (A) R

(B) R/2

(C) 2R

- (D) \mathbb{R}^2
- (E) Answer not known
- 196. Norton's current I_N flowing between terminals A and B of the following circuit is

(A) - 4.6 A

(B) -5.4 A

(C) 4.6 A

- (D) 5.4 A
- (E) Answer not known
- 197. Determine the current flowing in the 2Ω resistance in network shown in fig.

(A) 67.5Ω

 \checkmark (B) 6.75 Ω

(C) 6 Ω

- (D) 75Ω
- (E) Answer not known

198. Find *i* using superposition theorem.

(C) 16.5 A

(A)

- (E) Answer not known

199.. In the following circuit, the current flowing through 1.8 Ω resistor is

(D) 7.2 A

- (A) 3.2 A
- (C) 16 A
- (E) Answer not known

- 200. Superposition theorem is not applicable for
 - Voltage calculations (A)
 - (B) Bilateral elements
 - Power calculations
 - (D) Passive elements
 - (E) Answer not known